强生病毒载体疫苗获批:更稳定、更便宜、更方便

收藏
关键词: 疫苗
资讯来源:生物制品圈
发布时间: 2021-03-07

美国时间2月27日晚, FDA 给予强生公司的预防新冠的病毒载体疫苗Ad26.COV2.S紧急使用授权(EUA)。这条消息恰逢其时,截至目前,美国已经有二千八百多万例冠状病毒病例,超过五十万美国人死于新冠。


今天,透过疫苗的研发历史,我们一起来看看病毒载体疫苗,特别是强生的新冠疫苗。




01
我们在疫苗研发方面取得了长足进展


1796年,爱德华·詹纳接种牛痘以产生对天花的免疫力,他用活的动物病毒来激发人类的免疫力。60年后的1885年,路易斯·巴斯德观察到狂犬病病毒通过传递感染兔子几十次,毒力会减弱,于是他用活的但已减毒的狂犬病病毒制造了狂犬病疫苗。

1880年,巴斯德成功地用弱病毒制备了一种鸡霍乱疫苗,他只需将这种微生物长时间置于酸性培养基中便降低了病毒的活性。 1896年,伦敦陆军医学院的Almroth Wright利用加热杀死的伤寒杆菌研制出了一种伤寒疫苗[1]。

从那时起,疫苗取得了巨大的进步。其中最有效的疫苗是减毒或灭活疫苗,包括天花、脊髓灰质炎和麻疹疫苗。今天,制造只含有抗原的疫苗是最流行的方法,因为这样就完全避免了如果病毒没有被完全杀死或减毒而可能导致感染的风险。

现代疫苗大多由基因工程制造。例如,默克公司的人乳头瘤病毒 (HPV) 疫苗Gardasil是一种由主要衣壳抗原L1蛋白制备的重组疫苗,该蛋白是通过将其遗传信息插入普通面包酵母的质粒中而产生的。它聚集形成病毒样颗粒,提供与病毒颗粒相似的免疫原性,但己完全没有HPV的致癌基因组。[2]

自从詹纳的第一个疫苗问世以来,我们已经取得了长足的进步。两百年后的今天,疫苗接种至少控制了世界各地14种主要的细菌和病毒疾病,包括天花、白喉、破伤风、黄热病、百日咳、乙型流感嗜血杆菌病、脊髓灰质炎、麻疹、腮腺炎、风疹、伤寒、狂犬病、轮状病毒、和乙型肝炎[3]。

令人遗憾的是,尽管经过多年努力,我们仍然没有针对艾滋病毒、结核病、疟疾和许多其他广泛传播的病原体的高效疫苗。我们还有很长的路要走。


02
病毒载体疫苗


几乎每一种新冠疫苗都有一个共同的目标:阻止病毒上的刺突蛋白与宿主细胞表面的血管紧张素转换酶-2 (ACE2) 之间的相互作用。

每一种新冠病毒都有大约200个刺状糖蛋白,它们像蘑菇一样聚集在病毒的球形表面。受体结合域 (RBD) 位于尖峰的顶部,是它与ACE2直接接触的地方。当刺突蛋白抓住ACE2,就会经历一个戏剧性的转变。它使病毒和宿主细胞贴近进而细胞膜融合,使病毒穿透宿主细胞膜进入细胞质。这个过程被称为向性,也是感染的第一步。 

一旦进入细胞内,冠状病毒就利用宿主细胞自身的生化机制开始复制制造下一代病毒。因此,病毒的刺突蛋白对病毒的复制周期至关重要,也是我们产生中和抗体的主要靶点。这些抗体则可以锁定入侵的病毒,阻止它们进入我们的细胞。

目前的研究的新冠疫苗分为五类,都含有或制造刺突蛋白:

▨ 减毒灭活病毒疫苗;

 mRNA疫苗;

 病毒载体疫苗;

▨ 亚单位蛋白疫苗; 

▨ DNA质粒疫苗。


传统的用减毒活病毒 (弱毒) 或全灭活病毒 (灭活) 制备疫苗的方法是非常有效的,但它们需要较长的时间来研制。它们作用的机理是通过刺激我们的B细胞来产生抗体。

中国的国药集团研发了新冠灭活病毒疫苗。与DNA疫苗一样,灭活疫苗通常需要打两针,辉瑞和Moderna的mRNA疫苗也是如此。与此相反,一些病毒载体疫苗在只打一次针后可诱导强烈而持久的中和抗体反应。

制造病毒载体疫苗的四个领跑者是中国的康希诺生物, 牛津大学/阿斯利康、俄罗斯的Gamaleya研究所, 和强生公司。


什么是载体(vector)?


载体 也被称为受体或介质,是一种更无害的细菌或病毒 (例如腺病毒) ,抗原的基因序列 (例如新冠的棘突蛋白) 被插入其中。


什么是病毒载体疫苗


病毒载体疫苗也被称为载体疫苗,是一种利用载体将抗原基因的编码有效地传递到宿主细胞核并引发免疫反应的疫苗。

病毒载体疫苗是亚单位疫苗,因为它们只制造抗原,而不是整个病毒。它们使用另一种更无害的病毒,如腺病毒,痘病毒,慢病毒,水泡性口炎病毒,疱疹病毒,麻疹病毒携带的基因指令来制造刺突蛋白。

目前的冠状病毒疫苗都使用腺病毒, 这是有很好的原因的。腺病毒能引起轻度感冒或流感样症状,是20世纪50年代首次从手术切除的腺样体中分离出来的。腺病毒作为无包膜的二十面体双链DNA (dsDNA) 病毒,被认为是大型病毒,易于操作,很容易进入细胞。

腺病毒已经从过去最初用于基因取代治疗的工具转变为如今的疫苗运载工具。由于其高插入容量和经证实的在哺乳动物宿主中诱导先天性和适应性免疫应答免疫原性,而成为很有吸引力的疫苗载体。

为了构建冠状病毒载体疫苗,需要从病毒基因组中鉴定并制备新冠融合前稳定蛋白的基因。同时,选择一种腺病毒载体并基因工程化使其不能复制。将修饰后的腺病毒作为载体病毒与作为基因载体的刺突蛋白DNA融合制成疫苗。这就是为什么病毒载体疫苗也被称为重组载体疫苗。

当病人接种此类疫苗时,重组腺病毒载体会感染宿主细胞,并将刺突蛋白DNA推入细胞核。随后,细胞读取冠状病毒刺突蛋白的基因并将其复制到信使RNA (mRNA) 中。然后,mRNA告诉细胞利用宿主细胞自身的生化机制制造出天然的新冠棘突蛋白。

接种细胞产生的一些刺突状蛋白形成刺突状物,迁移到细胞表面并伸出尖端,形成带抗原的细胞。腺病毒载体疫苗是诱导辅助性T细胞应答的最佳疫苗。


康希诺使用复制缺陷型腺病毒血清型[5] (Ad5) 作为病毒载体,制备其新冠疫苗Ad5-nCoV。Ad5广泛感染人类并引起普通感冒,是最早于20世纪80年代使用的腺病毒载体之一。研究人员将E1早期基因从Ad5剥离,使其无法复制,并将新冠刺突蛋白基因插入到基因工程细胞株中。

康希诺在2014年埃博拉疫情期间开发了一种基于Ad5的疫苗,2017年在中国批准用于部队。这次利用他们在Ad5载体方面的专长,康希诺迅速开发了以Ad5为病毒载体的新冠疫苗。2020年3月,康希诺成为全球第一家开始进行新冠疫苗临床试验的公司。Ad5-nCoV现已被一些国家批准进行免疫接种。


人类腺病毒载体 (如Ad5) 的主要缺点是很多人对该载体本身已有免疫力,这可能破坏载体并削弱疫苗的效力。Ad5传播广泛,一些人特别是老年人体内含有抗体,会对疫苗使其失效。

在美国,大约40%的美国人对Ad5呈血清阳性。为了克服这一缺点,牛津/阿斯利康选择了黑猩猩腺病毒,强生公司选择了在人类中流行率较低的26型腺病毒 (Ad26)

俄罗斯的人造卫星V型疫苗 (rAD26-s/rAd5-s) 首先注射Ad26载体,然后注射Ad5载体加强,两者都携带新冠棘突蛋白的基因。据报道,人造卫星V型疫苗的有效率为92%。普京的女儿在接种疫苗后发烧,可能是因为基于病毒载体的疫苗刺激了强烈的免疫反应,特别是对于第二针。 

如前所述,牛津阿斯利康疫苗 (ChAdOx1 nCoV-19) 使用与人类Ad5非常相似的黑猩猩腺病毒作为载体。黑猩猩腺病毒在大多数人群中的血清流行率低于10%,但在撒哈拉沙漠以南的非洲略高。

早在2012年,牛津大学的研究小组就根据在黑猩猩粪便中发现的一种腺病毒,开发出了他们自己的黑猩猩衍生载体ChAdOx1。他们利用黑猩猩腺病毒载体成功研制出一种抗埃博拉病毒的疫苗。为了制备冠状病毒疫苗,黑猩猩腺病毒基因组被修饰以去除病毒复制基因,然后构建新冠棘突蛋白的遗传物质。

通过这种方式,病毒载体不能复制及引起疾病,而是作为载体来传递编码棘突蛋白的DNA。


03
强生新冠疫苗

2020 年1月10日, 复旦大学张永珍教授及其合作者发表了新冠的基因组序列,这是一张病毒组成的向导图。它免费发布在网上,这样全世界的科学家就可以利用这些基因信息制造疫苗。

在看到基因序列后,强生公司分部——位于荷兰莱顿的杨森疫苗和预防公司开始独立研究针对新冠的腺病毒载体疫苗,世界上其他几个小组也是如此。

为了制备新冠疫苗,杨森的科学家选择了人腺病毒血清型26 (Ad26) 作为病毒载体。Ad26是一种相对罕见的病毒,可引起轻度感冒,但对入侵人体细胞非常有效。在亚洲和欧洲只有10–20%的人有免疫力,Ad26在人类中的流行程度低于Ad5。

杨森已经对腺病毒疫苗做了几十年的研究,尤其是Ad26平台。2020年7月,他们的针对埃博拉病毒的Ad26病毒载体疫苗 (Zabdeno) 获得了欧洲药品管理局 (EMA) 的批准,这是首个被证明可以预防人类疾病的商业化的腺病毒载体疫苗。此外,工业化和可扩展的制造工艺使Ad26病毒载体成为疫苗开发的一个有吸引力的平台。

为了制造这种载体,杨森的研究人员删除了Ad26病毒的E1区,使其不能在细胞中繁殖,只能侵入细胞。随后,他们把新冠棘突蛋白以双链DNA的形式与Ad26病毒融合,形成。由于Ad26不能自我复制,疫苗Ad26.COV2.S是一种复制缺陷载体,因此需要更高剂量才能有效。

与其他腺病毒载体疫苗一样,强生疫苗能诱导中和抗体与棘突蛋白结合,从而防止病毒感染我们的细胞。它还能诱导T细胞清除被病毒感染的细胞。此外,免疫系统还含有一种称为记忆B细胞和记忆T细胞的特殊细胞,它们可能会将冠状病毒的信息保留数年甚至数十年。

以腺病毒为基础的新冠疫苗比来自辉瑞和Moderna的mRNA疫苗更稳定。DNA不像RNA那么脆弱,腺病毒坚硬的蛋白质外壳有助于保护其内的遗传物质。强生疫苗可在2–8 °C下冷藏3个月。更重要的是,腺病毒疫苗更便宜,每剂成本约为2.5美元,而mRNA疫苗成本约为17美元,是前者的7倍。

在疗效方面,与辉瑞和Moderna的两种mRNA疫苗相比,强生的疫苗效果不佳,后者的有效率约为95%,而强生公司的疫苗在世界范围内的总有效率只有66%,尽管它对美国患者的有效率为72%,对预防重症病例的有效率为85%。

然而,评价疫苗有很多方面。所有在临床试验中服用强生疫苗的患者都没有住院或死亡,且只需要注射一次,而不是注射两次。更重要的是,强生公司的疫苗价格低廉,因此很容易生产数十亿剂疫苗,而且可以储存在普通冰箱中,不象mRNA疫苗有特殊储存要求。

乔纳斯·索尔克有句名言:“人生最宝贵的是没有恐惧的自由”。随着强生公司的病毒载体疫苗——第三种新冠疫苗的问世,我们将在2021年秋天实现群体免疫,从而摆脱对这个看不见的敌人的恐惧, 重获自由!



(滑动查看英文原文)

Johnson & Johnson’s Viral Vector Vaccine

—The third COVID vaccine approved by the FDA


On February 27, 2021, the FDA granted emergency use authorization (EUA) for Johnson & Johnson’s viral vector vaccine (Ad26.COV2.S) as a prophylactic agent against COVID-19. This piece of news could not have come at a more opportune time. The US has registered over 27 million coronavirus cases thus far and nearly half a million of Americans have died of COVID-19.

Today, through the prism of vaccine history, together, we look at viral vector vaccines in general and Johnson & Johnson’s COVID vaccine in particular. 

1.We have come a long way in vaccinesIn 

1796, when Edward Jenner inoculated cowpox to produce immunity to smallpox, he used a live animal virus to elicit immunity for humans. Sixty years later in 1885, when Louis Pasteur used live but attenuated rabies virus to make a rabies vaccine after he observed that the virulence of the virus was weakened each time by passaging through dozens of rabbits. A few years previously in 1880, Pasteur succeeded in preparing a chicken cholera vaccine using weakened virus by simply leaving the microbe for a long time in an acid culture. In 1896, Almroth Wright at the Army Medical College in London developed a vaccine against typhoid fever using killed typhoid bacilli by heating.1 Since then on, tremendous advances have been made in vaccines. 

Some of the most effective vaccines are attenuated or inactivated vaccines including smallpox, polio, and measles vaccines. Today, making vaccines only containing the antigen is the most popular approach because there is no chance of having the whole virus, which could potentially cause infection if the virus were not completed killed or attenuated. Modern vaccines are mostly made by genetic engineering. For instance, Merck’s quadrivalent human papillomavirus (HPV) vaccine Gardasil is a recombinant vaccine prepared from the major capsid antigen L1 protein, which is produced by inserting its genetic information into a plasmid of ordinary bakers’ yeast. It aggregates to form virus-like particles that provide immunogenicity similar to virions but are completely devoid of HPV’s oncogenic genome.2 

We have come a long way since Jenner’s first vaccine. Today, two hundred years later, vaccination has controlled 14 major bacterial and viral diseases at least in the part of the world, including smallpox, diphtheria, tetanus, yellow fever, pertussis, Haemophilus influenzae type B disease, poliomyelitis, measles, mumps, rubella, typhoid, rabies, rotavirus and hepatitis B.3 Regrettably despite years of effort, we still do not have highly efficacious vaccines against HIV, tuberculosis, malaria and numerous other widespread pathogens. We still have a long way to go. 

2.Viral vector vaccines

Nearly  every COVID-19 vaccine shares the same objective: preventing interactions between the spike (S) protein on the virus and angiotensin converting enzyme-2 (ACE2) on the surface of host cell. Each SARS-CoV-2 virus has about two hundred spike glycoproteins, which are mushroom-like studding in the spherical surface of the virus. The receptor-binding domain (RBD) sits on top of the spike is where it makes direct contact with ACE2. Once the spike protein grabs hold of ACE2, it undergoes a dramatic transformation. It pulls the virus and host cell so close together that their membranes fuse and allow the virus penetrate the host cell membrane and enter into the cytoplasm. The process is called tropism, which is the first step of an infection. Once inside the cell, the coronavirus begins replicating by taking advantage of the host cell’s own biochemical machinery to make the next generation of virus. As a consequence, virus’s spike protein is critical for its viral replication cycle and is the primary target of our neutralizing antibodies. The antibodies, in turn, latch onto invading viruses and prevent them from entering our cells. 

Five classes of COVID vaccines are being pursued, all of which contain or make the spike protein:
a.Attenuated and inactivated virus vaccines;

b.mRNA vaccines;

c.Viral vector vaccines; 

d.Subunit protein vaccines; and

e.DNA plasmid vaccines. 


Conventional methods of making vaccines using live-attenuated virus (weakened) or whole-inactivated (killed) virus are tried and true, but they take longer times to develop. They stimulate our B cells to make antibodies. Sinovac and Sinopharm in China developed inactivated virus vaccines for COVID-19. Like DNA vaccines, inactivated vaccines often need two immunizations, so do both mRNA vaccines by Pfizer and Moderna. In contrast, some viral vector vaccines can induce robust and durable neutralizing antibody responses after a single immunization.[4]   


The four frontrunners for making viral vector vaccines are China’s CanSino Biologics (CanSinoBIO), Oxford University/AstraZeneca, Russia’s Gamaleya Institute, and Johnson & Johnson.


What is a vector? 


Also known as a recipient or a vehicle, a vector is a more innocuous bacterium or a virus (e.g., adenovirus) into which the genetic sequence of the antigen (e.g., spike protein of SARS-CoV-2) is inserted.


What is a viral vector vaccine? 


Also known as a vectored vaccine, it is a vaccine that uses a vector to deliver genes encoding the antigen as the genetic payload into host-cell nuclei and elicit an immune response.  


Viral vector vaccines are considered subunit vaccines because they only make antigens, not the whole virus. They use another more innocuous virus such adenovirus, poxvirus, lentivirus, vesicular stomatitis virus, herpes virus, and measles virus to carry the genetic instructions to make spike protein. Current coronavirus vaccines all use adenoviruses for very good reasons. Known to cause mild cold or flu-like symptoms, adenoviruses were first isolated in the 1950s from adenoids that had been surgically removed. As non-enveloped icosahedral double-stranded DNA (dsDNA) viruses, adenoviruses are considered large viruses and amenable to easy manipulation and very good at getting into cells. Adenoviruses have transitioned from initially tools for gene replacement therapy in the past to bona fide vaccine delivery vehicles nowadays. They are attractive vaccine vectors due to their high insert capacity and proven immunogenicity to induce both innate and adaptive immune responses in mammalian hosts. 


To construct a viral vector vaccine for COVID, the genes encoding the prefusion-stabilized spike protein from SARS-CoV-2 are identified from the virus genome and prepared. Meanwhile, an adenovirus vector is chosen and genetically engineered so it cannot replicate. The modified adenovirus as the carrier virus is fused with the spike protein DNA as the genetic cargo to make the vaccine. This is why a viral vector vaccine is also known as a recombinant vector vaccine. When the patient is given the vaccine, the recombinant adenovirus vector infects the host cell and pushes the spike DNA into the cell nucleus. Subsequently the gene for the coronavirus spike protein are read by the cell and copied into a messenger RNA (mRNA). mRNA then tells the cells to make the natural SARS-CoV-2 spike protein using host cell’s own biochemical machinery. Some of the spike proteins produced by the vaccinated cell form spikes that migrate to its surface and stick out their tips, giving rise to an antigen-presenting cell. Adenovirus vector vaccines are the best of all vaccines at inducing a helper T-cell response. 


CanSinoBIO uses replication-defective adenovirus serotype 5 (Ad5) as the viral vector to make their COVID vaccine Ad5-nCoV. Ad5, which ubiquitously infects humans and causes the common cold, was one the first adenoviral vectors being used in the 1980s. Researchers stripped Ad5 of the early E1 gene rendering it replication-incompetent and inserted those genes into genetically engineered cell lines.  


Founded by former Sanofi vaccine developers, CanSinoBIO developed an Ad5-based vaccine for Ebola during the 2014 outbreak, which approved in 2017 in China for military use. Taking advantage of their expertise with the Ad5 vector, CanSinoBIO quickly developed the COVID-19 vaccine using Ad5 as the viral vector. In March 2020, CanSinoBIO became the first company in the whole world to begin a clinical trial of a COVID-19 vaccine. Ad5-nCoV has been approved for immunization in several countries now. 


The major downside to the human adenovirus vectors such as Ad5 is pre-existing immunity against the vector itself, which could destroy the vehicle and blunt the vaccine’s effectiveness. Ad5 circulates widely, causing common cold and some people, especially the elderly, harbor antibodies that will target the vaccine, making it ineffective. In the US, about 40% of Americans are seropositive for Ad5. To overcome such a shortcoming, Oxford/AstraZeneca picked chimpanzee adenovirus and Johnson & Johnson chose to use adenovirus serotype 26 (Ad26) with lower prevalence in humans.  


Russia’s Sputnik V vaccine (rAD26-S/rAd5-S) starts with a shot of Ad26 vector followed by a booster with Ad5 vector, both of which carry the gene for the spike protein of SARS-CoV-2. The Sputnik-V is reported to be 92% effective. Putin’s daughter had a fever after taking the vaccine, probably because vector-based vaccines stimulate a strong immune response, especially for the booster shot. 


As alluded earlier, the Oxford-AstraZeneca vaccine (ChAdOx1 nCoV-19) uses a chimpanzee adenovirus as a vector that closely resembled human Ad5. Chimpanzee adenoviruses have sero-prevalence of below 10% in most human populations with slightly increased rates in Sub-Sahara Africa. Back in 2012, the Oxford group developed its own chimpanzee-derived vector, dubbed ChAdOx1, based on an adenovirus discovered in chimpanzee feces. They successfully developed a vaccine against Ebola virus using the chimpanzee adenovirus vector. For making the COVID vaccine, the chimpanzee adenoviral genome is modified to remove viral replicating genes, and the genetic material of the SARS-CoV-2 spike protein is then constructed. This way, the viral vector cannot replicate or cause disease, rather it acts as a vehicle to deliver the DNA encoding the spike protein. The reason of using a non-human adenovirus is because most people may have been exposed to human adenovirus and have immunity against it.  


3.The Johnson and Johnson COVID vaccines


On January 10, 2020, Professor Yong-Zhen Zhang at Fudan University with many collaborators published the genome sequence of the SARS-CoV-2, a map of how the virus is composed of. It was posted free on-line so scientists around the world could take advantage of the genetic information to make vaccines. As soon as they saw genetic sequence online, Janssen Vaccines & Prevention BV in Leiden, The Netherlands, a division of Johnson & Johnson, began independently working on adenoviral vector vaccines for COVID-19, as did several other groups around the world.  


To make the COVID vaccine, Janssen scientists chose human adenovirus serotype 26 (Ad26) as the viral vector. Ad26 is a relatively rare virus that causes mild colds but is very effective at invading human cells. With only 10–20% people in Asia and Europe with immunity, Ad26 is less prevalent in humans than Ad5, although Ad26 is more prevalent in the Sub-Sahara region. Janssen already had done decades of research on adenovirus-based vaccines in general and the Ad26 platform in particular. In July 2020, their Ad26 viral vector vaccine for Ebola (Zabdeno) was approved by the European Medicines Agency (EMA), which marked the first commercial adenoviral vector vaccine proven to prevent a disease in humans. Furthermore, the availability of industrialized and scalable manufacturing processes makes Ad26 viral vector an attractive platform for vaccine development. 


To make the vector, the Janssen researchers disabled the Ad26 virus by deleting its E1 region so that it could only invade cells but not multiply in them (replicating incompetent). They subsequently fused to the Ad26 virus with the genetic instruction in the form of double-stranded DNA to make a prefusion-stabilized SARS-CoV-2 spike protein. The vaccine Ad26.COV2.S is a replication defective vector since Ad26 cannot reproduce itself, a higher dose is needed to be effective.[6]  


Like other adenovirus vector vaccines, the Johnson & Johnson vaccine elicits neutralizing antibodies bind to the spike protein in manner that prevents the virus from infecting our cells. It also induces T-cells that clear cells infected by the virus. In addition, the immune system also contains special cells called memory B cells and memory T cells that might retain information about the coronavirus for years or even decades. 


Adenovirus-based vaccines for Covid-19 are more robust than mRNA vaccines from Pfizer and Moderna. DNA is not as fragile as RNA because the adenovirus’s tough protein coat helps protect the genetic material inside. the Johnson & Johnson vaccine can be stored refrigerated for up to three months at 2–8 °C. More importantly, adenovirus vaccines are cheaper, costing about $2.5 per dose, whereas mRNA vaccines cost about $17, seven-fold more expensive.  


In terms of efficacy, the Johnson & Johnson’s vaccine is underwhelming in comparison to the two mRNA vaccines by Pfizer and Moderna, which have an effective rate of about 95%. Johnson & Johnson’s vaccine only has an overall 66% effective rate worldwide, even though it is 72% effective for patients in the US and 85% effective preventing severe cases. However, there are many things going for the vaccine. There is no hospitalization or deaths for all patients who took the Johnson & Johnson’s vaccine in clinical trials and it only needs one shot instead of two shots. More importantly, the Johnson & Johnson’s vaccine is inexpensive thus it is easy to make billions of doses and it may be stored in normal refrigerators in place of special storage requirement by the mRNA vaccines.  


Jonas Salk famously said: “What had the most profound effect was the freedom from fear?”. With the arrival of Johnson & Jonson’s viral vector vaccine, the third COVID vaccine, we will have the freedom from fear of the invisible enemy as we achieve herd immunity in the summer of 2021!



参考资料


1.Cope, Zachary Almroth Wright, Founder of Modern Vaccine-therapy Thomas Nelson Ltd, London: UK (1966). 


2.Castle, P. E.; Maza, M. Prophylactic HPV vaccination: past, present, and future In Epidemiology and infection 2016, 144(3), 449–468.


3.(a) Plotkin Stanley History of Vaccination In Proceedings of the National Academy of Sciences of the United States of America 2014, 111(34), 12283–12287. (b) Plotkin, Stanley A.; Plotkin, Susan L. The development of vaccines: how the past led to the future In Nature Reviews Microbiology 2011, 9(12), 889–893.


4.Mercado, Noe B.; Zahn, Roland; Wegmann, Frank; Loos, Carolin; Chandrashekar, Abishek; Yu, Jingyou; Liu, Jinyan; Peter, Lauren; McMahan, Katherine; Tostanoski, Lisa H.; et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques In Nature 2020, 586(7830), 583–588. 


5.Tatsis, Nia; Ertl, Hildegund C. J. Adenoviruses as vaccine vectors In Molecular Therapy 2004, 10(4), 616–629.


6.Custers, Jerome; et al. Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment In Vaccines 2020, in press.

为了更详细的阐明如何在生物药研发和生产平台的建立中引入一次性封闭系统,生物制品圈联合Cytiva推出一次性封闭系统系列直播讲座,将陆续和大家见面。


第一期报名方式

直播间已开放报名,快快扫码或点击文末“阅读原文”报名获取地址!

本次直播的回放视频也会在群内分享给大家~扫描下方二维码,直播,回放不错过!





嘉宾介绍及大纲





孙左成 龙沙生物 微生物实验室经理

简介:孙左成,目前任职于龙沙生物技术有限公司的微生物实验室经理,曾经在知名外企工作超过10年以上(如辉瑞,礼来,默克),主要专注于制药行业GMP相关公用系统和空调系统的验证和日常监测管理,微生物实验室体系建立,实验室电子化系统管理(如LIMS),实验室设备校准,验证和维护管理,微生物测试方法的验证和确认,实验室精益项目管理等。


课程主题及摘要:

主题生物制药环境要求和污染介绍

摘要:

(1) 生物制药环境相关的法规要求分享,

(2) 霉菌污染案例分享,

(3) 广州龙沙生物的环境控制策略介绍。





冯建勋  Cytiva资深产品专家

简介:精通一次性产品设计及生产工艺,同时负责细胞培养工艺放大的技术支持,曾在中信国健(现三生国健)及广州汉腾从事细胞培养、工艺开发相关工作,毕业于华东理工大学,生物化工专业,硕士。


课程主题及摘要:

主题如何搭建Closed  Systems对生产环境进行有效控制

摘要:

(1) Closed Systems介绍及相关一次性产品

(2) Closed Systems的优势

(3) 如何搭建Closed Systems平台

识别微信二维码,添加生物制品圈小编,符合条件者即可加入生物制品微信群!

请注明:姓名+研究方向!





本公众号所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系(cbplib@163.com),我们将立即进行删除处理。所有文章仅代表作者观点,不代表本站立场。